Exercise 2.3.1

(Exact solution of logistic equation) There are two ways to solve the logistic equation $\dot{N}=r N(1-N / K)$ analytically for an arbitrary initial condition N_{0}.
a) Separate variables and integrate, using partial fractions.
b) Make the change of variables $x=1 / N$. Then derive and solve the resulting differential equation for x.

Solution

Part (a)

Solve the logistic equation by separating variables and integrating both sides.

$$
\begin{gathered}
\frac{d N}{d t}=\frac{r}{K} N(K-N) \\
\frac{d N}{N(K-N)}=\frac{r}{K} d t \\
\int \frac{d N}{N(K-N)}=\int \frac{r}{K} d t \\
\int\left(\frac{\frac{1}{K}}{N}-\frac{\frac{1}{K}}{N-K}\right) d N=\int \frac{r}{K} d t \\
\frac{1}{K} \ln |N|-\frac{1}{K} \ln |N-K|=\frac{r}{K} t+C \\
\ln |N|-\ln |N-K|=r t+C K \\
\ln \left|\frac{N}{N-K}\right|=r t+C K \\
\left|\frac{N}{N-K}\right|=e^{r t+C K}
\end{gathered}
$$

Place \pm on the right side in order to remove the absolute value sign.

$$
\frac{N}{N-K}= \pm e^{C K} e^{r t}
$$

Use a new constant A for $\pm e^{C K}$.

$$
\begin{equation*}
\frac{N}{N-K}=A e^{r t} \tag{1}
\end{equation*}
$$

Now apply the initial condition $N(0)=N_{0}$ to determine A.

$$
\frac{N_{0}}{N_{0}-K}=A
$$

As a result, equation (1) becomes

$$
\begin{gathered}
\frac{N}{N-K}=\frac{N_{0}}{N_{0}-K} e^{r t} \\
N=N \frac{N_{0}}{N_{0}-K} e^{r t}-K \frac{N_{0}}{N_{0}-K} e^{r t} \\
\left(1-\frac{N_{0}}{N_{0}-K} e^{r t}\right) N=-K \frac{N_{0}}{N_{0}-K} e^{r t} \\
\frac{N_{0}-K-N_{0} e^{r t}}{N_{0}-K} N=-\frac{K N_{0} e^{r t}}{N_{0}-K} .
\end{gathered}
$$

Multiply both sides by $N_{0}-K$.

$$
\left[N_{0}\left(1-e^{r t}\right)-K\right] N=-K N_{0} e^{r t}
$$

Therefore,

$$
N(t)=\frac{K N_{0} e^{r t}}{K-N_{0}\left(1-e^{r t}\right)}
$$

Part (b)

The same initial value problem will be solved here but with a different method.

$$
\frac{d N}{d t}=r N\left(1-\frac{N}{K}\right), \quad N(0)=N_{0}
$$

Make the change of variables,

$$
x=\frac{1}{N},
$$

in the ODE and the initial condition.

$$
\frac{d}{d t}\left(\frac{1}{x}\right)=\frac{r}{x}\left(1-\frac{1}{K x}\right), \quad x(0)=\frac{1}{N(0)}=\frac{1}{N_{0}}
$$

Simplify the transformed ODE.

$$
\begin{gather*}
\left(-\frac{1}{x^{2}}\right) \frac{d x}{d t}=\frac{r}{x}\left(1-\frac{1}{K x}\right) \\
\frac{d x}{d t}=r\left(\frac{1}{K}-x\right) \\
\frac{d x}{d t}+r x=\frac{r}{K} \tag{2}
\end{gather*}
$$

This is a first-order linear ODE, so it can be solved with an integrating factor I.

$$
I=\exp \left(\int^{t} r d s\right)=e^{r t}
$$

Multiply both sides of equation (2) by I.

$$
e^{r t} \frac{d x}{d t}+r e^{r t} x=\frac{r}{K} e^{r t}
$$

Rewrite the left side as a derivative using the product rule.

$$
\frac{d}{d t}\left(e^{r t} x\right)=\frac{r}{K} e^{r t}
$$

Integrate both sides with respect to t.

$$
\begin{equation*}
e^{r t} x=\frac{1}{K} e^{r t}+D \tag{3}
\end{equation*}
$$

Apply the initial condition now to determine D.

$$
\frac{1}{N_{0}}=\frac{1}{K}+D \quad \rightarrow \quad D=\frac{1}{N_{0}}-\frac{1}{K}=\frac{K-N_{0}}{K N_{0}}
$$

Consequently, equation (3) becomes

$$
e^{r t} x=\frac{1}{K} e^{r t}+\frac{K-N_{0}}{K N_{0}} .
$$

Solve for x.

$$
\begin{aligned}
x(t) & =\frac{1}{K}+\frac{K-N_{0}}{K N_{0} e^{r t}} \\
& =\frac{N_{0} e^{r t}}{K N_{0} e^{r t}}+\frac{K-N_{0}}{K N_{0} e^{r t}} \\
& =\frac{N_{0} e^{r t}+K-N_{0}}{K N_{0} e^{r t}} \\
& =\frac{K+N_{0}\left(e^{r t}-1\right)}{K N_{0} e^{r t}} \\
& =\frac{K-N_{0}\left(1-e^{r t}\right)}{K N_{0} e^{r t}}
\end{aligned}
$$

Therefore, since $N(t)=1 / x(t)$,

$$
N(t)=\frac{K N_{0} e^{r t}}{K-N_{0}\left(1-e^{r t}\right)}
$$

